Cluster Ensemble Selection
نویسندگان
چکیده
This paper studies the ensemble selection problem for unsupervised learning. Given a large library of different clustering solutions, our goal is to select a subset of solutions to form a smaller but better performing cluster ensemble than using all available solutions. We design our ensemble selection methods based on quality and diversity, the two factors that have been shown to influence cluster ensemble performance. Our investigation revealed that using quality or diversity alone may not consistently achieve improved performance. Based on our observations, we designed three different selection approaches that jointly consider these two factors. We empirically evaluated their performances in comparison with both full ensembles and a random selection strategy. Our results indicate that by explicitly considering both quality and diversity in ensemble selection, we can achieve statistically significant performance improvement over full ensembles.
منابع مشابه
Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملOptimal Cluster Selection Based on Ant Colony Optimization for Cluster Oriented Ensemble Classifier in Stream data classification
In this paper we proposed a method of optimal selection of cluster for cluster oriented classifier. The cluster oriented classifier is great advantage over binary and conventional classifier. The cluster oriented classifier work very efficiently on real and sample data. But the cluster oriented ensemble classifier faced a problem of selection of number of cluster for ensemble. In current fashio...
متن کاملHierarchical cluster ensemble selection
Clustering ensemble performance is affected by two main factors: diversity and quality. Selection of a subset of available ensemble members based on diversity and quality often leads to a more accurate ensemble solution. However, there is not a certain relationship between diversity and quality in selection of subset of ensemble members. This paper proposes the Hierarchical Cluster Ensemble Sel...
متن کاملA Review of Cluster Based Classification Technique
Fusion and ensemble is important technique of machine learning. Fusion fused the feature attribute of different classifier and improved the classification of binary classifier. Instead of that ensemble technique provide the facility of merge two individual classifier and improve the performance of both classifiers. The ensemble technique of classifier depends on number of nearer point of classi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistical Analysis and Data Mining
دوره 1 شماره
صفحات -
تاریخ انتشار 2008